Time integration error estimation for continuous Galerkin schemes
نویسندگان
چکیده
منابع مشابه
Comparing Numerical Integration Schemes for Time-Continuous Car-Following Models
When simulating trajectories by integrating time-continuous car-following models, standard integration schemes such as the forth-order Runge-Kutta method (RK4) are rarely used while the simple Euler’s method is popular among researchers. We compare four explicit methods: Euler’s method, ballistic update, Heun’s method (trapezoidal rule), and the standard forth-order RK4. As performance metrics,...
متن کاملError estimation of fuzzy Newton-Cotes method for Integration of fuzzy functions
Fuzzy Newton-Cotes method for integration of fuzzy functions that was proposed by Ahmady in [1]. In this paper we construct error estimate of fuzzy Newton-Cotes method such as fuzzy Trapezoidal rule and fuzzy Simpson rule by using Taylor's series. The corresponding error terms are proven by two theorems. We prove that the fuzzy Trapezoidal rule is accurate for fuzzy polynomial of degree one and...
متن کاملComparison of two integration schemes for a micropolar plasticity model
Micropolar plasticity provides the capability to carry out post-failure simulations of geo-structures due to microstructural considerations and embedded length scale in its formulation. An essential part of the numerical implementation of a micropolar plasticity model is the integration of the rate constitutive equations. Efficiency and robustness of the implementation hinge on the type of int...
متن کاملDiscontinuous Galerkin error estimation for linear symmetrizable hyperbolic systems
We present an a posteriori error analysis for the discontinuous Galerkin discretization error of first-order linear symmetrizable hyperbolic systems of partial differential equations with smooth solutions. We perform a local error analysis by writing the local error as a series and showing that its leading term can be expressed as a linear combination of Legendre polynomials of degree p and p +...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2005
ISSN: 1617-7061,1617-7061
DOI: 10.1002/pamm.200510313